ON MODULAR GALOIS REPRESENTATIONS MODULO PRIME POWERS.

IMIN CHEN, IAN KIMING, GABOR WIESE

Abstract. We study modular Galois representations mod p^m. We show that there are three progressively weaker notions of modularity for a Galois representation mod p^m: we have named these ‘strongly’, ‘weakly’, and ‘dc-weakly’ modular. Here, ‘dc’ stands for ‘divided congruence’ in the sense of Katz and Hida. These notions of modularity are relative to a fixed level M.

Using results of Hida we display a ‘stripping-of-powers of p away from the level’ type of result: A mod p^m strongly modular representation of some level Np^r is always dc-weakly modular of level N (here, N is a natural number not divisible by p).

We also study eigenforms mod p^m corresponding to the above three notions. Assuming residual irreducibility, we utilize a theorem of Carayol to show that one can attach a Galois representation mod p^m to any ‘dc-weak’ eigenform, and hence to any eigenform mod p^m in any of the three senses.

We show that the three notions of modularity coincide when $m = 1$ (as well as in other, particular cases), but not in general.

1. Introduction

Let p be a prime number, which remains fixed throughout the article. Let N be a natural number not divisible by p. All number fields in the article are taken inside some fixed algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} and we fix once and for all field embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{Q}_p$, $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$, as well as a compatible isomorphism $\mathbb{C} \cong \mathbb{Q}_p$.

Let $f = \sum_{n=1}^{\infty} a_n(f) q^n \in S_k(\Gamma_1(Np^r))$ be a normalized cuspidal eigenform for all Hecke operators T_n with $n \geq 1$ (normalized means $a_1(f) = 1$). By Shimura, Deligne, and Serre, there is a continuous Galois representation

$$\rho = \rho_{f,p} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{Q}_p)$$

attached to f, which is unramified outside Np, and which satisfies

$$\text{tr} \rho(\text{Frob}_\ell) = a_{\ell}(f) \quad \text{and} \quad \det \rho(\text{Frob}_\ell) = \ell^{k-1} \chi(\ell),$$

where χ is the nebentypus of f.

By continuity and compactness, the Galois representation descends to a representation

$$\rho_{f,A,p} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathcal{O}_K),$$

where \mathcal{O}_K is the ring of integers of a finite extension K of \mathbb{Q}_p. This representation depends in general on a choice of \mathcal{O}_K-lattice Λ in K^2. Let $p = p_K$ be the maximal ideal of \mathcal{O}_K. We wish to consider the reduction mod p^m of $\rho_{f,A,p}$. However, because of ramification, the exponent m is not invariant under base extension.

For this reason, it is useful, following [18], to define $\gamma_K(m) := (m-1)e_{K/\mathbb{Q}_p} + 1$, with e_{K/\mathbb{Q}_p} the ramification index of K/\mathbb{Q}_p. This definition is made precisely so
that the natural maps below yield injections of rings, i.e. ring extensions of \(\mathbb{Z}/p^m\mathbb{Z} \),

\[
\mathbb{Z}/p^m\mathbb{Z} \hookrightarrow \mathcal{O}_K/\mathfrak{p}_K^{\gamma K(m)} \hookrightarrow \mathcal{O}_L/\mathfrak{p}_L^{\gamma L(m)}
\]

for any finite extension \(L/K \) (with \(\mathfrak{p}_L \) the prime of \(L \) over \(\mathfrak{p}_K \) in \(K \)). We can thus form the ring

\[
\overline{\mathbb{Z}}/p^m\mathbb{Z} := \lim_{\to K} \mathcal{O}_K/\mathfrak{p}_K^{\gamma K(m)},
\]

which we also consider as a topological ring with the discrete topology. When we speak of \(\alpha \pmod{p^m} \) for \(\alpha \in \overline{\mathbb{Z}}/p^m\mathbb{Z} \), we mean its image in \(\overline{\mathbb{Z}}/p^m\mathbb{Z} \). In particular, for \(\alpha, \beta \in \mathbb{Z}_p \), we define \(\alpha \equiv \beta \pmod{p^m} \) as an equality in \(\overline{\mathbb{Z}}/p^m\mathbb{Z} \), or equivalently, by \(\alpha - \beta \in \mathfrak{p}_K^{\gamma K(m)} \), where \(K/\mathbb{Q}_p \) is any finite extension containing \(\alpha \) and \(\beta \).

In this spirit, we define the reductions

\[
\rho_{f,\Lambda,p,m} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\overline{\mathbb{Z}}/p^m\mathbb{Z})
\]

for any \(m \in \mathbb{N} \). The representation \(\rho_{f,\Lambda,p,m} \) has the property:

\[
(*) \quad \text{tr } \rho_{f,\Lambda,p,m}(\text{Frob}_\ell) = (a_\ell(f) \pmod{p^m})
\]

for all primes \(\ell \nmid Np \).

From [1, Théorème 1] and the Chebotarev density theorem, a continuous Galois representation \(\rho_{p,m} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\overline{\mathbb{Z}}/p^m\mathbb{Z}) \) is determined uniquely up to isomorphism by \(\text{tr } \rho_{p,m}(\text{Frob}_\ell) \) for almost all (i.e., all but finitely many) primes \(\ell \), assuming the residual representation is absolutely irreducible. It follows that if there is one choice of \(\mathcal{O}_K \)-lattice \(\Lambda \) as above such that \(\rho_{f,\Lambda,p,1} \) is absolutely irreducible, then \(\rho_{f,p,m} = \rho_{f,\Lambda,p,m} \) is determined uniquely up to isomorphism. In such a case, we say \(\rho_{f,p,m} \) is the mod \(p^m \) Galois representation attached to \(f \).

Let \(M \in \mathbb{N} \). The \(\mathbb{C} \)-vector spaces \(S = S_k(\Gamma_1(M)) \) and \(S = S^b(\Gamma_1(M)) := \bigoplus_{i=1}^b S_i(\Gamma_1(M)) \) have integral structures, so it is possible to define (arithmetically) the \(A \)-module of cusp forms in \(S \) with coefficients in a ring \(A \), which we denote by \(S(A) \) (cf. Section 2.3). The spaces \(S(A) \) have actions by the Hecke operators \(T_n \) for all \(n \geq 1 \). We point out that every \(f \in S(\mathbb{Z}/p^m\mathbb{Z}) \) can be obtained as the reduction of some \(\tilde{f} \in S(\mathcal{O}_K) \) for some number field (or \(p \)-adic field) \(K \). However, for \(m > 1 \), if \(f \) is an eigenform for the Hecke operators \(T_n \) (for all \(n \geq 1 \) coprime to some fixed positive integer \(D \)), the lift \(\tilde{f} \) cannot be chosen as an eigenform (for the same Hecke operators), in general.

We say that \(f \in S_k(\Gamma_1(M))(\mathbb{Z}_p) \) is a strong Hecke eigenform (of level \(M \) and weight \(k \) over \(\mathbb{Z}_p \)) if there is a positive integer \(D \) such that \(f \) is a normalized eigenform for the Hecke operators \(T_n \) for all \(n \geq 1 \) coprime with \(D \). Given a Galois representation

\[
\rho_{p,m} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\overline{\mathbb{Z}}/p^m\mathbb{Z}),
\]

we say that \(\rho_{p,m} \) strongly arises from \(\Gamma_1(M) \) if \(\rho_{p,m} \) is isomorphic to \(\rho_{f,p,m} \) for some strong Hecke eigenform \(f \). As discussed above, under the assumption that \(\rho_{p,m} \) be residually absolutely irreducible, this is equivalent to

\[
\text{tr } \rho_{p,m}(\text{Frob}_\ell) = (a_\ell(f) \pmod{p^m})
\]

for all (or almost all) primes \(\ell \nmid Mp \).

Since the notion of strong modularity is too strong for many applications, we introduce two weaker notions: We say \(f \in S_k(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z}) \) is a weak Hecke eigenform (of level \(M \) and weight \(k \) over \(\mathbb{Z}/p^m\mathbb{Z} \)) if it is a normalized eigenform
for the Hecke operators T_n for all $n \geq 1$ coprime to some positive integer D. A normalized eigenform $f \in S^b(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z})$ for the Hecke operators T_n for all $n \geq 1$ coprime to some positive integer D is called a dc-weak Hecke eigenform (of level M and maximal weight b over $\mathbb{Z}/p^m\mathbb{Z}$). Here, dc stands for ‘divided congruence’ for reasons that will be explained in detail below.

There are natural maps
\[
S_k(\Gamma_1(M))(\mathbb{Z}_p) \to S_k(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z}),
\]
\[
S_k(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z}) \to S^b(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z}), k \leq b
\]
\[
S^b(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z}) \to \lim_{c \to 1} S^c(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z}).
\]

It follows that a strong eigenform of level M and some weight gives rise to a weak eigenform of the same level and weight, and a weak eigenform of level M and some weight gives rise to a dc-weak eigenform of the same level. Furthermore, if we regard our eigenforms inside the last direct limit, we can make sense of when two eigenforms (of the various kinds) are the same.

We derive in this article from Katz-Hida theory ([10], [7], [8]) that a dc-weak form of some level Np^r is dc-weak of level N (recall $p \nmid N$), under some mild technical restrictions. More precisely, we prove:

Proposition 1. Suppose that $p \geq 5$. Let $f \in S^b(\Gamma_1(Np^r))(\mathbb{Z}/p^m\mathbb{Z})$. Then there is $c \in \mathbb{N}$ and an element $g \in S^c(\Gamma_1(N))(\mathbb{Z}/p^m\mathbb{Z})$ such that
\[
f(q) = g(q) \in \mathbb{Z}/p^m\mathbb{Z}[[q]],
\]
where $f(q)$ and $g(q)$ denote the q-expansions of f and g.

As we show in Lemma 12, when $m = 1$, a dc-weak f eigenform over $\mathbb{Z}/p^m\mathbb{Z}$ is in fact the reduction of a strong eigenform. This means that we have a mod p Galois representation $\rho_{f,p,m}$ attached to f. Using results of Carayol [1], we show that it is possible to attach mod p^m Galois representations to dc-weak eigenforms of level M over $\mathbb{Z}/p^m\mathbb{Z}$, whenever the residual representation is absolutely irreducible. More general results involving infinite-dimensional completed Hecke algebras are due to Mazur, Gouvêa (see specifically Corollary III.5.8 of [6]), Hida, Wiles, but we provide a self-contained proof based on [1].

Theorem 2. Let f be a normalized dc-weak eigenform of level M over $\mathbb{Z}/p^m\mathbb{Z}$. Assume that the residual representation $\rho_{f,p,1}$ is absolutely irreducible. Then there is a continuous Galois representation
\[
\rho_{f,p,m} : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \to \text{GL}_2(\mathbb{Z}/p^m\mathbb{Z})
\]
unramified outside Mp such that for almost all primes $\ell \nmid Mp$ we have
\[
\text{tr}(\rho_{f,p,m}(\text{Frob}_\ell)) = f(T_\ell),
\]
where $f(T_\ell) \in \mathbb{Z}/p^m\mathbb{Z}$ is the eigenvalue of the operator T_ℓ (see Section 2).

One can be more precise: if the normalized dc-weak eigenform in the theorem is an eigenform for all T_n with n coprime to the positive integer D, then the final equality holds for all primes $\ell \nmid DNP$.

Having Galois representations attached to dc-weak eigenforms (and hence also to weak eigenforms), we can consider modularity questions. Towards this aim, we
introduce further terminology. We say \(\rho_{p,m} \) weakly arises from \(\Gamma_1(M) \) if \(\rho_{p,m} \) is isomorphic to \(\rho_{f,p,m} \) for some weak Hecke eigenform of level \(M \) and some weight \(k \) over \(\mathbb{Z}/p^m\mathbb{Z} \), and \(\rho_{p,m} \) dc-weakly arises from \(\Gamma_1(M) \) if \(\rho_{p,m} \) is isomorphic to \(\rho_{f,p,m} \) for some dc-weak Hecke eigenform of level \(M \) over \(\mathbb{Z}/p^m\mathbb{Z} \).

One of the motivating questions behind the present work is the question of level-reduction for such mod \(p^m \) representations. Specifically, we treat the question of ‘stripping powers of \(p \) away from the level’: if \(\rho_{p,m} \) strongly arises from \(\Gamma_1(Np^r) \), does it strongly arise from \(\Gamma_1(N) \)? As is well-known, mod \(p \) Galois representations \(\rho_{f,p,1} \) always strongly arise from \(\Gamma_1(N) \), cf. Ribet [14, Theorem 2.1] for \(p \geq 3 \), and Hatada [9, Theorem 2] for \(p \geq 2 \). However, when the nebentypus has a non-trivial component of \(p \)-power conductor and order, the representations \(\rho_{f,p,m} \) do not in general even weakly arise from \(\Gamma_1(N) \) if \(m \geq 2 \), as we show in Section 5.

Instead, we derive from Katz-Hida theory, via Proposition 1, certain weaker versions of the above ‘stripping powers of \(p \) away from the level’.

Theorem 3. Let \(f \) be a dc-weak eigenform of level \(Np^r \) over \(\mathbb{Z}/p^m\mathbb{Z} \). Assume that the residual representation \(\rho_{f,p,1} \) is absolutely irreducible. Also assume \(p \geq 5 \).

Then the representation \(\rho_{f,p,m} \) dc-weakly arises from \(\Gamma_1(N) \).

Proof. This follows by a combination of Proposition 1 and Theorem 2: By definition the form \(f \) is a normalized eigenform for all \(T_n \) with \((n,D) = 1 \). Pick a form \(g \) at level \(N \) according to Proposition 1. Enlarging \(D \) if necessary so as to have \(p \mid D \), we can be sure that \(g \) is also a normalized eigenform for all \(T_n \) with \((n,D) = 1 \). As the Galois representation attached to \(g \) by Theorem 2 is isomorphic to \(\rho_{f,p,m} \), the desired follows.

We stress the following particular consequence of the theorem. Let \(f \) be a holomorphic normalized cuspidal Hecke eigenform of level \(Np^r \) and weight \(k \). Then there exists a number field \(K \) and a cusp form \(g \in S^b(N)(O_K) \) (which cannot be taken to be an eigenform, in general) such that \(g \pmod{p^m} \) is a dc-weak eigenform and its attached Galois representation \(\rho_{g,p,m} \) is isomorphic to \(\rho_{f,p,m} \).

We note that a result of Hatada, [9, Theorem 1], has a consequence that can be interpreted as the following statement, showing that the need for divided congruence forms only appears when the nebentypus has a non-trivial component of \(p \)-power conductor and order.

Theorem 4 (Hatada). Let \(f \) be a strong eigenform of level \(Np^r \) and weight \(k \) over \(\mathbb{Z}_p \) such that \(\langle \ell \rangle f = \chi(\ell)f \), where \(\chi \) has no non-trivial component of \(p \)-power conductor and order. Then the representation \(\rho_{f,p,m} \) weakly arises from \(\Gamma_1(N) \).

Let us remark that in the deduction that mod \(p \) Galois representations strongly arise from \(\Gamma_1(N) \) (rather than just weakly arise or dc-weakly arise) one uses two facts: the validity of the Deligne–Serre lifting lemma for mod \(p \) representations, and the absence of constraints on the determinant of mod \(p \) Galois representations arising from strong Hecke eigenforms. Neither of these facts are true in general for mod \(p^m \) representations.

The paper is organized as follows. In Section 2 we provide background information on integral structures on spaces of modular forms, Hecke algebras, and divided congruence forms. In Section 3 we construct Galois representations attached to dc-weak eigenforms. In Section 4 we give a proof of our ‘stripping powers of \(p \)
2. Modular forms and Hecke algebras

All material in this section is well-known. We present it here in a concise form.

2.1. \(q \)-expansions. Let \(S = \bigoplus_{k \in \mathbb{N}} S_k(\Gamma_1(M)) \) be the \(\mathbb{C} \)-vector space of all cusp forms of any positive weight at a fixed level \(M \). Let each Hecke operator \(T_n \) act on \(S \) via the diagonal action. We will be considering finite-dimensional subspaces \(S \subseteq S \) of the following type:

\[
S = S^b(\Gamma_1(M)) := \bigoplus_{k=1}^b S_k(\Gamma_1(M))
\]

for any \(b \in \mathbb{N}, M \geq 1 \). Such a subspace \(S \) is stabilized by \(T_n \) for all \(n \geq 1 \).

For \(f \in S \), let \(f(q) \in \mathbb{C}[[q]] \) denote its \(q \)-expansion. We denote the \(q \)-expansion map on \(S \subseteq S \) by

\[
\Phi_S : S \to \mathbb{C}[[q]], f \mapsto f(q) = \sum_{n \geq 1} a_n(f)q^n.
\]

Proposition 5. Fix \(M \in \mathbb{N} \) and \(b \in \mathbb{N} \). Let \(S := S^b(\Gamma_1(M)) \). Then \(\Phi_S \) is injective.

Proof. Let \(f_k \in S_k(\Gamma_1(M)) \), for \(k = 1, \ldots, b \) be such that \(\sum_{k=1}^b f_k(q) = 0 \). The function \(\sum_{k=1}^b f_k \) is holomorphic and 1-periodic and hence uniquely determined by its Fourier series. Hence, \(\sum_{k=1}^b f_k = 0 \) and it then follows from [13], Lemma 2.1.1, that we have \(f_k = 0 \) for each \(k \).

2.2. Hecke algebras. Let \(R \) be a subring of \(\mathbb{C} \). Let

\[
T_R(S) := \langle T_n \in \text{End}_{\mathbb{C}}(S) | n \geq 1 \rangle \text{-algebra } \subseteq \text{End}_{\mathbb{C}}(S)
\]

be the \(R \)-Hecke algebra associated to \(S \subseteq S \). If \(R = \mathbb{Z} \), then we simply write \(T(S) := T_{\mathbb{Z}}(S) \).

Lemma 6. Let \(S := S^b(\Gamma_1(M)) \).

(a) Let \(f \in S \). Then \(a_1(T_n f) = a_n(f) \) for all \(n \geq 1 \).

(b) Let \(R \subseteq \mathbb{C} \) be a subring. Then the pairing of \(R \)-modules

\[
T_R(S) \times S \to \mathbb{C}, \quad (T,f) \mapsto a_1(Tf)
\]

is non-degenerate.

Proof. (a) follows, since the equation \(a_1(T_n f) = a_n(f) \) is true on every summand of \(S \), hence also in the sum.

(b) Let first \(f \in S \) be given. If \(a_1(Tf) = 0 \) for all \(T \in T_R(S) \), then, in particular, \(a_1(T_n f) = a_n(f) = 0 \) for all \(n \), whence \(f \) is zero by the injectivity of the \(q \)-expansion map. Let now \(T \in T_R(S) \) be given. If \(a_1(Tf) = 0 \) for all \(f \in S \), then, in particular, \(0 = a_1(T(T_n f)) = a_n(Tf) \) for all \(f \) and all \(n \). Thus, as before we conclude that \(Tf \) is zero for all \(f \), which by definition means \(T = 0 \).
2.3. Integral structures and cusp forms with coefficients in rings. As is well-known, the spaces $S_k(\Gamma_1(M))$ have integral structures in the sense that $S_k(\Gamma_1(M))$ contains a full lattice which is stable under the Hecke operators T_n for all $n \geq 1$ (cf. for instance [3, Proposition 2.7]). It follows the space $S = S^b(\Gamma_1(M)) := \oplus_{k=1}^b S_k(\Gamma_1(M))$ also contains a full lattice stable under the Hecke operators T_n for all $n \geq 1$.

Thus, $\mathbb{T}(S)$ sits inside an integer matrix ring, and $\mathbb{T}_C(S)$ sits inside the corresponding complex matrix ring. This implies that $\mathbb{T}(S)$ is free and finite over \mathbb{Z}. Furthermore, the natural homomorphism $\mathbb{T}(S) \otimes \mathbb{C} \to \mathbb{T}_C(S)$ is injective, so as $T_n \otimes 1$ is sent to T_n and these generate $\mathbb{T}_C(S)$ over \mathbb{C}, this is an isomorphism

$$\mathbb{T}(S) \otimes \mathbb{C} \cong \mathbb{T}_C(S).$$

Hence we also see that the map:

$$\text{Hom}_C(\mathbb{T}_C(S), \mathbb{C}) \to \text{Hom}_C(\mathbb{T}(S) \otimes \mathbb{C}, \mathbb{C}) \to \text{Hom}_\mathbb{Z}(\mathbb{T}(S), \mathbb{C})$$

coming from $\mathbb{T}(S) \to \mathbb{T}(S) \otimes \mathbb{C} \rightarrow \mathbb{T}_C(S)$ is an isomorphism (the last arrow is always an isomorphism.) Now, $S \cong \text{Hom}_C(\mathbb{T}_C(S), \mathbb{C})$ as we have a non-degenerate pairing between these two complex vector spaces, cf. Lemma 6. Explicitly, we obtain an isomorphism

$$\text{Hom}_C(\mathbb{T}_C(S), \mathbb{C}) \to S$$

by mapping $\phi \in \text{Hom}_C(\mathbb{T}_C(S), \mathbb{C})$ to $\sum_n \phi(T_n)q^n$ ($q = e^{2\pi i z}$). By the above isomorphisms, it follows that the map

$$\Psi_S : \text{Hom}_\mathbb{Z}(\mathbb{T}(S), \mathbb{C}) \to S$$

given by

$$\Psi_S(\phi) := \sum_n \phi(T_n)q^n$$

is well defined and is an isomorphism.

For any commutative ring A we make the definition

$$S(A) := \text{Hom}_\mathbb{Z}(\mathbb{T}(S), A) \quad (\mathbb{Z}\text{-linear homomorphisms}).$$

We call $S(A)$ the cusp forms in S with coefficients in A. This definition comes together with a natural action of $\mathbb{T}(S)$ on $S(A)$ given by $(T,f)(T') = f(TT')$. Note that $S(\mathbb{C}) \cong S$.

We remark that for any ring A and any $1 \leq k \leq b$, the map

$$S_k(\Gamma_1(M))(A) \to S^b(\Gamma_1(M))(A), \quad f \mapsto f \circ \pi,$$

is an A-module monomorphism, where π is the surjective ring homomorphism

$$\mathbb{T}(S^b(\Gamma_1(M))) \to \mathbb{T}(S_k(\Gamma_1(M)))$$

defined by restricting Hecke operators.

For a positive integer D, let $\mathbb{T}_R^{(D)}(S)$ be the subring of $\mathbb{T}_R(S)$ generated by those Hecke operators T_n for which n and D are coprime.

Lemma 7. Let A be a ring and $f \in S(A)$. The following are equivalent:

(i) f is an eigenvector with eigenvalue $f(T)$ for every $T \in \mathbb{T}^{(D)}(S)$ and $f(1) = 1$.

(ii) The restriction of f to $\mathbb{T}^{(D)}$ is a ring homomorphism.
Proof. The claim immediately follows from the equation
\[f(TT') = (T.f)(T') = f(T)f(T') \]
with \(T, T' \in \mathbb{T}(D)(S) \). \qed

Accordingly, we say that a cusp form \(f \in S(A) \) is a normalized Hecke eigenform if there is a positive integer \(D \) such that the restriction of \(f : \mathbb{T}(S) \to A \) to \(\mathbb{T}(D)(S) \) is a ring homomorphism. This makes precise the terminology from the Introduction. The chosen isomorphism \(\mathbb{C} \cong \overline{\mathbb{Q}}_p \) identifies \(S \cong S(\mathbb{C}) \) with \(S(\overline{\mathbb{Q}}_p) \). Hence, via the isomorphism \(S(\mathbb{C}) \cong S \) normalized holomorphic eigenforms in \(S \) (in the usual sense, for almost all Hecke operators) are precisely the normalized eigenforms in \(S(\overline{\mathbb{Q}}_p) \). In the following we will identify forms in \(S \) with elements in either of the two spaces \(S(\mathbb{C}) \) and \(S(\overline{\mathbb{Q}}_p) \).

2.4. Integral structures for Hecke algebras, base change and lifting. Using the integral structure on \(S \) we can also equip Hecke algebras with an integral structure in the following sense.

Lemma 8. Fix \(M, b \in \mathbb{N} \) and let \(S := \bigoplus_{k=1}^b S_k(\Gamma_1(M)) \). Let \(R \subseteq \mathbb{C} \) be a subring.
(a) The \(R \)-Hecke algebra \(\mathbb{T}_R(S) \) is free as an \(R \)-module of rank equal to \(\dim_{\mathbb{C}} S \), in particular, \(\mathbb{T}(S) \) is a free \(\mathbb{Z} \)-module of that rank.
(b) \(\mathbb{T}_R(S) \cong \mathbb{T}(S) \otimes_{\mathbb{Z}} R \).

Proof. We know that the natural map \(\mathbb{T}(S) \otimes \mathbb{C} \to \mathbb{T}_C(S) \) is an isomorphism and that \(\mathbb{T}(S) \) is free and finite over \(\mathbb{Z} \). It follows that \(\mathbb{T}(S) \) is a lattice of full rank in \(\mathbb{T}_C(S) \). That rank is the \(\mathbb{C} \)-dimension of \(\mathbb{T}_C(S) \), i.e., of \(\text{Hom}_{\mathbb{C}}(\mathbb{T}_C(S), \mathbb{C}) \cong S \). Hence we have (a) for \(R = \mathbb{Z} \).

It follows immediately that \(\mathbb{T}(S) \otimes_{\mathbb{Z}} R \) is a free \(R \)-module of the same rank, which surjects onto \(\mathbb{T}_R(S) \). Now, \(\mathbb{T}(S) \) has a \(\mathbb{Z} \)-basis which remains linearly independent over \(\mathbb{C} \). Thus, it also remains linearly independent over \(R \), and its \(R \)-span is by definition \(\mathbb{T}_R(S) \), which is thus a free \(R \)-module of the same rank and is isomorphic to \(\mathbb{T}(S) \otimes_{\mathbb{Z}} R \). \qed

We further obtain that cusp forms in \(S \) with coefficients behave well with respect to arbitrary base change:

Lemma 9. Fix \(M, b \in \mathbb{N} \) and let \(S := \bigoplus_{k=1}^b S_k(\Gamma_1(M)) \). Let \(A \to B \) be a ring homomorphism. Then \(S(A) \otimes_A B \cong S(B) \).

Proof. By Lemma 8 we know that \(\mathbb{T}(S) \) is a free \(\mathbb{Z} \)-module of some finite rank \(d \). Hence: \(S(A) \otimes_A B \cong \text{Hom}_{\mathbb{Z}}(\mathbb{T}(S), A) \otimes_A B \cong \text{Hom}_{\mathbb{Z}}(\mathbb{Z}^d, A) \otimes_A B \cong A^d \otimes_A B \cong B^d \cong \text{Hom}_{\mathbb{Z}}(\mathbb{T}(S), B) = S(B) \). \qed

For the sake of completeness we also record the following simple lifting property.

Lemma 10. Fix \(M, b \in \mathbb{N} \) and let \(S := \bigoplus_{k=1}^b S_k(\Gamma_1(M)) \).

Let \(f \in S(\mathbb{Z}/p^m \mathbb{Z}) \). Then there is a number field (and hence there is also a \(p \)-adic field) \(K \) and \(\tilde{f} \in S(\mathcal{O}_K) \) such that \(\tilde{f} \equiv f \pmod{p^m} \), in the sense that \(\tilde{f}(T_n) \equiv f(T_n) \pmod{p^m} \) for all \(n \in \mathbb{N} \).

Proof. As \(\mathbb{T}(S) \) is a free \(\mathbb{Z} \)-module of finite rank (Lemma 8), it is a projective \(\mathbb{Z} \)-module. Moreover, the image of the homomorphism (of abelian groups) \(f : \mathbb{T}(S) \to \mathbb{Z}/p^m \mathbb{Z} \) lies in \(\mathcal{O}_K / \mathfrak{p}_K^{\gamma(k)}(m) \) for some number field (or, \(p \)-adic field) \(K \).
The projectivity implies by definition that \(f \) lifts to a homomorphism \(\tilde{f} : T(S) \to \mathcal{O}_K \).

We stress again that eigenforms mod \(p^m \) cannot, in general, be lifted to eigenforms if \(m > 1 \), but see Lemma 12.

2.5. Divided congruences. In the next lemma we will show that when the coefficients are over a \(\mathbb{Q} \)-algebra \(K \) one can split \(S(K) \) into a direct sum according to weights. This does not hold true, in general, for arbitrary rings and leads to divided congruences.

Lemma 11. Fix \(M, b \in \mathbb{N} \) and let \(S := \bigoplus_{k=1}^b S_k(\Gamma_1(M)) \). Put \(S_k := S_k(\Gamma_1(M)) \) for each \(k \).

If \(K \) is any \(\mathbb{Q} \)-algebra, then one has \(S(K) = \bigoplus_{k=1}^b S_k(K) \). Moreover, if \(K \) is a field extension of \(\mathbb{Q} \) and \(f \in S(K) \) is a normalized eigenform, then there is \(k \), a normalized eigenform \(\tilde{f} \in S_k(L) \) for some finite extension \(L/K \) and a positive integer \(D \) such that \(f(T_n) = \tilde{f}(T_n) \) for all \(n \) coprime with \(D \).

Proof. For each \(1 \leq k \leq b \), we have a natural homomorphism \(T_\mathbb{Q}(S) \to T_\mathbb{Q}(S_k) \) given by restriction, and hence taking the product of these, we obtain a monomorphism \(T_\mathbb{Q}(S) \to \prod_{k=1}^b T_\mathbb{Q}(S_k) \) of \(\mathbb{Q} \)-algebras. By Lemma 8, we have that

\[
\dim_{\mathbb{Q}} T_\mathbb{Q}(S) = \dim_{\mathbb{C}} S = \sum_{k=1}^b \dim_{\mathbb{C}} S_k = \sum_{k=1}^b \dim_{\mathbb{Q}} T_\mathbb{Q}(S_k),
\]

showing that \(T_\mathbb{Q}(S) \cong \prod_{k=1}^b T_\mathbb{Q}(S_k) \). Now, we see that

\[
S(K) = \text{Hom}_\mathbb{Z}(T(S), K) \cong \text{Hom}_\mathbb{Q}(T(S) \otimes_\mathbb{Z} \mathbb{Q}, K) \cong \text{Hom}_\mathbb{Q}(T_\mathbb{Q}(S), K) \cong \text{Hom}_\mathbb{Q}(\prod_{k=1}^b T_\mathbb{Q}(S_k), K) \cong \bigoplus_{k=1}^b \text{Hom}_\mathbb{Z}(T_\mathbb{Z}(S_k), K) = \bigoplus_{k=1}^b S_k(K).
\]

Now assume that \(K \) is a field extension of \(\mathbb{Q} \) and that \(f \) is a normalized eigenform (for all operators \(T_n \) with \(n \) coprime to \(D \)), giving a ring homomorphism \(T_\mathbb{Q}(S) \to K \).

It can be extended to a ring homomorphism \(\tilde{f} : T_\mathbb{Q}(S) \to L \) for some finite extension \(L/K \), since in the integral extension of rings \(T_\mathbb{Q}(S) \to T_\mathbb{Q}(S) \) we need only choose a prime ideal of \(T_\mathbb{Q}(S) \) lying over the prime ideal \(\ker(f) \subset T_\mathbb{Q}(S) \) (see [5, Prop. 4.15]).

To conclude, it suffices to note that every ring homomorphism \(T_\mathbb{Q}(S) \to K \) factors through a unique \(T_\mathbb{Q}(S_k) \). In order to see this, one can consider a complete set of orthogonal idempotents \(e_1, \ldots, e_n \) of \(T_\mathbb{Q}(S) \), i.e. \(e_i^2 = e_i \), \(e_ie_j = 0 \) for \(i \neq j \) and \(1 = e_1 + \cdots + e_n \). As \(K \) is a field and idempotents are mapped to idempotents, each \(e_i \) is either mapped to 0 or 1, and as 0 maps to 0 and 1 maps to 1, there is precisely one idempotent that is mapped to 1, the others to 0. This establishes the final assertion. \(\square \)

Note that in general it is not true that a normalized eigenform \(f \) as in the lemma lies \(S_k(K) \) for any \(k \) because by our definitions eigenforms are only eigenfunctions for all operators \(T_n \) with \(n \) coprime to some positive integer \(D \): let \(D \in \mathbb{N} \), let \(f \in S_k(K) \) be an eigenform for all \(T_n \) and let \(0 \neq g \in S_{r}(K) \) be a modular form such that \(g(T_n) = 0 \) for all \(n \) coprime with \(D \); then \(f + g \) is an eigenform (outside \(D \)) but does not lie in a single weight.
We explicitly point out the following easy consequence of Lemma 11. We let \(\mathcal{O} \) be the ring of integers of \(K \), where \(K \) is a number field or a finite extension of \(\mathbb{Q}_p \). Consider again a space \(S \) of the form \(S = \bigoplus_{k=1}^b S_k(\Gamma_1(M)) \). By definition, it follows that we have

\[
S(\mathcal{O}) = \{ f \in S(K) \mid f(T_n) \in \mathcal{O} \ \forall n \} = \{ f \in \bigoplus_{k=1}^b S_k(K) \mid f(T_n) \in \mathcal{O} \ \forall n \}.
\]

Hence, our spaces \(S^b(\Gamma_1(Np^r))(K) \) and \(S^b(\Gamma_1(Np^r))(\mathcal{O}) \) are precisely the ones denoted \(S^b(\Gamma_1(Np^r); K) \) and \(S^b(\Gamma_1(Np^r); \mathcal{O}) \) on p. 550 of [7].

Explicitly, \(f \in S(\mathcal{O}) \) is of the form \(f = \sum_k f_k \) with \(f_k \in S_k(K) \), and although none of the \(f_k \) need be in \(S_k(\mathcal{O}) \), the sum has all its coefficients in \(\mathcal{O} \). This is the origin of the name ‘divided congruence’ for such an \(f \): Suppose for example that we have forms \(g_k \in S(\mathcal{O}) \) for various weights \(k \) and that \(\sum_k g_k \equiv 0 \) (mod \(\pi^m \)) for some \(m \) where \(\pi \) is a uniformizer of \(\mathcal{O} \). Putting \(f_k := g_k / \pi^m \) for each \(k \) we then have \(f_k \in S_k(\mathcal{O}) \) for all \(k \) as well as \(f := \sum_k f_k \in S(\mathcal{O}) \). Conversely, any element of \(S(\mathcal{O}) \) arises in this way by ‘dividing a congruence’.

We now turn our attention to the case \(m = 1 \) (recall \(\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p \)) and give a short proof of the Deligne–Serre lifting lemma (Lemma 6.11 of [3]) in terms of our setup. It implies that ‘dc-weak’, ‘weak’ and ‘strong’ are equivalent notions for \(m = 1 \).

Lemma 12 (Deligne–Serre lifting lemma). Let \(S = \bigoplus_{k=1}^b S_k(\Gamma_1(M)) \) as above. Let \(f \in S(\mathbb{F}_p) \) be a dc-weak eigenform of level \(M \); say, it is an eigenform for all \(T_n \) for \(n \) coprime to some \(D \in \mathbb{N} \). Then there is a normalized holomorphic eigenform \(g \) of level \(M \) and some weight \(k \) such that \(g(T_n) \equiv f(T_n) \) (mod \(p \)) for all \(n \) coprime with \(D \) (i.e., \(f \) is the reduction mod \(p \) of a strong eigenform.)

Proof. The kernel of the ring homomorphism \(f : \mathcal{T}^{(D)}(S) \to \mathbb{F}_p \) is a maximal ideal \(\mathfrak{m} \) of \(\mathcal{T}^{(D)}(S) \). Recall that \(\mathcal{T}^{(D)}(S) \) is free of finite rank as a \(\mathbb{Z} \)-module (by Lemma 8), whence it is equidimensional of Krull dimension 1, since \(\mathbb{Z}_\ell \to \mathcal{T}^{(D)}(S)_\lambda \) is an integral ring extension for any completion at a maximal ideal \(\lambda \) (say, lying above \(\ell \)), and the Krull dimension is invariant under integral extensions (cf. [5, Prop. 9.2], for instance.) Consequently, there is a prime ideal \(\mathfrak{p} \subset \mathcal{T}^{(D)}(S) \) such that \(\mathfrak{p} \not\subseteq \mathfrak{m} \). The quotient \(\mathcal{T}(S)^{(D)}/\mathfrak{p} \) is an order in a number field \(K \). Thus the composite map

\[
g : \mathcal{T}^{(D)}(S) \to \mathcal{T}^{(D)}(S)/\mathfrak{p} \hookrightarrow \mathcal{O}_K \hookrightarrow K \hookrightarrow \mathbb{C}
\]

is a ring homomorphism. Its reduction mod \(p \) of \(g \) is \(f \), since \((\mathfrak{p}, p) \not\subseteq \mathfrak{m} \). Note that \(g \) can be extended to a strong eigenform in \(g \in S(\mathbb{C}) = S \), which by (the proof of) Lemma 11 lies in \(S_k(\Gamma_1(M)) \) for some \(k \). \(\square \)

3. Galois representations

In this section we construct a Galois representation attached to a dc-weak eigenform mod \(p^m \). For expressing its determinant, we find it convenient to work with Hida’s stroke operator \(\iota_\ell \), which we denote \([\ell] \). We recall its definition from [7], p. 549. Let us consider again a space of the form \(S = \bigoplus_{k=1}^b S_k(\Gamma_1(M)) \) for some \(b \). We now consider specifically a level \(M \) written in the form

\[
M = Np^r
\]

where \(p \nmid N \).
Let $Z = \mathbb{Z}_p^\times \times (\mathbb{Z}/N\mathbb{Z})^\times$, into which we embed \mathbb{Z} diagonally with dense image. We have a natural projection $\pi: Z \to \mathbb{Z}/p^r\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \cong \mathbb{Z}/Np^r\mathbb{Z}$. Let first $f \in S$ be of weight k. Hida defines for $z = (z_p, z_0) \in Z$

$$[z]f = z_p^k \pi(z))f.$$

We recall (although we do not need it in this article) that the diamond operator $\langle d \rangle$ for $d \in \mathbb{Z}/Np^r\mathbb{Z}$ is defined as $f|_d \sigma_d$ with $\sigma_d \in \text{SL}_2(\mathbb{Z})$ such that $\sigma_d = (d^{-1} \; \ast)$ mod Np^r. Since the diamond operator is multiplicative (it gives a group action of $\mathbb{Z}/Np^r\mathbb{Z}^\times$), so is the stroke operator.

We now show that for $z \in \mathbb{Z}$ the definition of $[z]$ can be made so as not to involve the weight. Let $\ell \nmid Np$ be a prime. Due to the well known equalities $T_{\ell,\ell} = \ell^{k-2}\langle \ell \rangle$ and $\ell T_{\ell,\ell} = T_{\ell}^2 - T_{\ell^2}$, one obtains

$$[\ell] = \ell^k \langle \ell \rangle = \ell^2 T_{\ell,\ell} = \ell(T_{\ell}^2 - T_{\ell^2}).$$

This first of all implies that $[\ell] \in \mathbb{T}(S)$, since the right hand side clearly makes sense on S and is an element of $\mathbb{T}(S)$. Due to multiplicativity, all $[n]$ lie in $\mathbb{T}(S)$ for $n \in \mathbb{Z}$. Consequently, $[n]$ acts on $S(A)$ for any ring A by its action via $\mathbb{T}(S)$. Moreover, if $f \in S(A)$ is an eigenform for all T_n ($n \in \mathbb{N}$), then it is also an eigenfunction for all $[n]$. Strictly speaking it is not necessary for our purposes, but, nevertheless we mention that one can extend the stroke operator to a group action of Z on $S(O)$ for all complete \mathbb{Z}_p-algebras O by continuity (which one must check). Thus, if $f \in S(O)$ is an eigenfunction for all Hecke operators, then it is in particular an eigenfunction for all $[z]$ for $z \in \mathbb{Z}$, whence sending $[z]$ to its eigenvalue on f gives rise to a character $\theta: Z \to O^\times$, which we may also factor as $\theta = \eta \psi$ with $\psi: \mathbb{Z}/N\mathbb{Z}^\times \to O^\times$ and $\eta: \mathbb{Z}_p^\times \to O^\times$.

Since it is the starting point and the fundamental input to the sequel, we recall the existence theorem on p-adic Galois representations attached to normalized Hecke eigenforms for $k = 2$ by Shimura, for $k > 2$ by Deligne and for $k = 1$ by Deligne and Serre (see, e.g., [4], p. 120). By Frobenius we always mean an arithmetic Frobenius element at ℓ.

Theorem 13. Suppose that $S = S_k(\Gamma_1(Np^r))$ with $k \geq 1$. Suppose $f \in S(\mathbb{Q}_p)$ is a normalized eigenform, so that $\langle \ell \rangle f = \chi(\ell) f$ for a character $\chi: (\mathbb{Z}/Np^r\mathbb{Z})^\times \to \mathbb{Q}_p^\times$ for primes $\ell \nmid Np$.

Then there is a continuous odd Galois representation

$$\rho = \rho_{f,p} : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \to \text{GL}_2(\mathbb{Q}_p)$$

that is unramified outside Np and satisfies

$$\text{tr}(\rho(\text{Frob}_\ell)) = f(T_\ell) \quad \text{and} \quad \det(\rho(\text{Frob}_\ell)) = \ell^{k-1}\chi(\ell)$$

for all primes $\ell \nmid Np$.

Corollary 14. Suppose that $S = \bigoplus_{k=1}^\infty S_k(\Gamma_1(Np^r))$. Suppose $f \in S(\mathbb{Q}_p)$ is a normalized eigenform, so that $\langle \ell \rangle f = \eta(\ell)\psi(\ell) f$ for some characters $\psi: (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{Q}_p^\times$ and $\eta: \mathbb{Z}_p^\times \to \mathbb{Q}_p^\times$.

Then there is a continuous Galois representation

$$\rho = \rho_{f,p} : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \to \text{GL}_2(\mathbb{Q}_p)$$

that is unramified outside Np and satisfies

$$\text{tr}(\rho(\text{Frob}_\ell)) = f(T_\ell) \quad \text{and} \quad \det(\rho(\text{Frob}_\ell)) = \ell^{-1}\eta(\ell)\psi(\ell)$$
for all primes $\ell \nmid Np$.

Proof. From Lemma 11 we know that f has a unique weight k, i.e. lies in some $S_k(\mathcal{O}_p)$. Thus, f also gives rise to a character $\chi : \mathbb{Z}/Np^r\mathbb{Z}^\times \to \mathcal{O}_p^\times$ by sending the diamond operator (ℓ) to its eigenvalue on f. The assertion now follows from the equation $\ell^k(\ell) = [\ell]$ and Theorem 13. □

Corollary 15. Suppose that $S = \bigoplus_{k=1}^{b} S_k(\Gamma_1(Np^r))$. Suppose $\tilde{f} \in S(\mathbb{F}_p)$ is a normalized eigenform, so that $[\ell]\tilde{f} = \eta(\ell)\psi(\ell)\tilde{f}$ for some characters $\psi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{F}_p^\times$ and $\eta : \mathbb{Z}_p^\times \to \mathbb{F}_p^\times$.

Then there is a semisimple continuous Galois representation

$$\rho = \rho_{\tilde{f},p,1} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F}_p)$$

that is unramified outside $\mathfrak{N}p$ and satisfies

$$\text{tr}(\rho(\text{Frob}_\ell)) = f(T_\ell) \text{ and } \det(\rho(\text{Frob}_\ell)) = \ell^{-1}\eta(\ell)\psi(\ell)$$

for all primes $\ell \nmid Np$.

Proof. By Lemma 12, there is an eigenform $f \in S(\mathbb{Z}_p)$ whose reduction is \tilde{f}, whence by Corollary 14 there is an attached Galois representation $\rho_{f,p}$. Due to the compactness of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and the continuity, there is a finite extension K/\mathbb{Q}_p such that the representation is isomorphic to one of the form $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(O_K)$. We define $\rho_{f,p,1}$ as the semisimplification of the reduction of this representation modulo the maximal ideal of O_K. It inherits the assertions on the characteristic polynomial at Frob_ℓ from $\rho_{f,p}$. □

Next we construct a Galois representation into the completed Hecke algebra.

Theorem 16. Suppose that $S = \bigoplus_{k=1}^{b} S_k(\Gamma_1(Np^r))$.

Let D be a positive integer and let \mathfrak{m} be a maximal ideal of $\mathbb{T}^{(D)}(S) := \mathbb{T}^{(D)}(S) \otimes_{\mathbb{Z}} \mathbb{Z}_p$ and denote by $\mathbb{T}^{(D)}(S)_{\mathfrak{m}}$ the completion of $\mathbb{T}^{(D)}(S)$ at \mathfrak{m}. Assume that the residual Galois representation attached to

$$\mathbb{T}^{(D)}(S) \rightarrow \mathbb{T}^{(D)}(S) \rightarrow \mathbb{T}^{(D)}(S)_{\mathfrak{m}} \rightarrow \mathbb{T}^{(D)}(S)/\mathfrak{m} \rightarrow \mathbb{F}_p$$

is absolutely irreducible (note that this ring homomorphism can be extended to a ring homomorphism $\mathbb{T}(S) \to \mathbb{F}_p$).

Then there is a continuous representation

$$\rho = \rho_{\mathfrak{m}} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F}_p)\mathbb{T}^{(D)}(S)_{\mathfrak{m}},$$

that is unramified outside $\mathfrak{N}p$ and satisfies

$$\text{tr}(\rho(\text{Frob}_\ell)) = T_\ell \text{ and } \det(\rho(\text{Frob}_\ell)) = \ell^{-1}[\ell]$$

for all primes $\ell \nmid DNp$.

Proof. Assume first that all prime divisors of Np also divide D. As the Hecke operators T_n with n coprime to D commute with each other and are diagonalizable (as elements of $\text{End}_{\mathbb{C}}(S)$), there is a \mathbb{C}-basis Ω for S consisting of eigenforms for $\mathbb{T}^{(D)}(S)$. As $\mathbb{T}^{(D)}(S)$ is finite over \mathbb{Z}, for each $f \in \Omega$, its image onto $\mathbb{T}^{(D)}(\mathbb{C}f)$ is an order in a number field. Here, obviously $\mathbb{T}^{(D)}(\mathbb{C}f)$ denotes the \mathbb{Z}-subalgebra of $\text{End}_{\mathbb{C}}(\mathbb{C}f)$ generated by the T_n with $(n,D) = 1$.

Consider the natural map $\mathbb{T}^{(D)}(S) \rightarrow \prod_{f \in \Omega} \mathbb{T}^{(D)}(\mathbb{C}f)$, which is a monomorphism because Ω is a \mathbb{C}-basis for S. Letting $R = \mathbb{T}^{(D)}(S) \otimes \mathbb{Q}$, we see that $\prod_{f \in \Omega} \mathbb{T}^{(D)}(\mathbb{C}f) \otimes \mathbb{Q}$
there is a continuous Galois representation

\[\rho \]

with the maximal ideal of obtained from the previous one by discarding factors where \(m \) is not sent into the maximal ideal of \(O_i \). Each projection \(T^{(D)}(S) \to O_i \) is a map of local rings.

Each ring homomorphism \(g_i : T^{(D)}(S) \to K_i \) lifts to a ring homomorphism \(f_i : T(S) \to E_i \), where \(E_i \) is a finite extension of \(K_i \). By Corollary 14, for each \(i \), there is a continuous Galois representation \(\rho_i : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(O'_i) \), where \(O'_i \) is the ring of integers of \(E_i \).

Let \(\rho = \prod_i \rho_i : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \prod_i \text{GL}_2(O'_i) = \text{GL}_2(\prod_i O'_i) \) be the product representation. Under the inclusion \(T^{(D)}(S) \to \prod_i O'_i \), we see for \(\ell \nmid DNp \), that \(\text{tr} \rho(\text{Frob}_\ell) = T_\ell \) and \(\det \rho(\text{Frob}_\ell) = \ell^{-1}[\ell] \). The residual Galois representations \(\bar{\rho}_i : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(k'_i) \), where \(k'_i \) is the residue field of \(O'_i \), are all isomorphic to the Galois representation attached to \(T^{(D)}(S) \to T^{(D)}(S)/m \), and hence are absolutely irreducible.

Applying [1, Théorème 2], with \(A = T^{(D)}(S)_m \) (which is a complete local ring, hence henselian), and \(A' = \prod_i O'_i \) (which is a semi-local extension of \(A \)), we deduce that the representation \(\rho \) descends to a continuous Galois representation

\[\rho_m : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(T^{(D)}(S)_m), \]

as claimed.

For the general case, when \(D \) is not divisible by all prime divisors of \(Np \), one first applies the above with \(D' := DNp \) and the maximal ideal \(m' \) of \(T^{(D')} \) given as \(m \cap T^{(D')} \) to obtain \(\rho_{m'} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(T^{(D')}(S)_{m'}) \), which can finally be composed with the natural map \(T^{(D')}(S)_{m'} \to T^{(D)}(S)_{m} \).

Corollary 17. Suppose that \(S = \bigoplus_{k=1}^h S_k(\Gamma_1(Np^r)) \). Let \(A \) be a complete local ring with maximal ideal \(p \) of residue characteristic \(p \). Suppose \(f \in S(A) \) is a normalized eigenform, so that \([\ell]f = \eta(\ell)\psi(\ell)f \) for some characters \(\psi : (\mathbb{Z}/N\mathbb{Z})^\times \to A^\times \) and \(\eta : \mathbb{Z}_p^\times \to A^\times \). Assume the Galois representation attached to the reduction \(\bar{f} : T(S) \to A \to A/p \) mod \(p \) of \(f \), which defines an element of \(S(\overline{\mathbb{F}}_p) \), is absolutely irreducible (cf. Corollary 15).

Then there is a continuous Galois representation

\[\rho = \rho_{f,p} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(A) \]

that is unramified outside \(Np \) and satisfies

\[\text{tr} \rho(\text{Frob}_\ell) = f(T_\ell) \text{ and } \det \rho(\text{Frob}_\ell) = \ell^{-1}\eta(\ell)\psi(\ell) \]

for all primes \(\ell \nmid DNp \) (where \(D \) any the integer such that the restriction of \(f \) to \(T^{(D)}(S) \) is a ring homomorphism).

Proof. Since \(S(A) \) is a normalized eigenform, \(f : T^{(D)}(S) \to A \) is a ring homomorphism, which factors through \(T^{(D)}(S)_m \) for some maximal ideal \(m \), since \(A \) is complete and local. (The ideal \(m \) can be seen as the kernel of \(T^{(D)}(S) \to A \to A/p \).) We thus have a ring homomorphism \(T^{(D)}(S)_m \to A \). Composing this with the
Galois representation ρ_m from Theorem 16 yields the desired Galois representation $\rho_{f,p}$.

\[\square \]

Proof of Theorem 2. It suffices to apply Corollary 17 with $A = \mathbb{Z}/p^n\mathbb{Z}$. \[\square \]

For applications, the most important case of Corollary 17 is when $A = \mathbb{Z}/p^n\mathbb{Z}$.

4. Stripping powers of p from the level

In this section, we use results of Katz and Hida in order to remove powers of p from the level of cusp forms over $\mathbb{Z}/p^n\mathbb{Z}$, at the expense of using divided congruences.

Let M be any positive integer. Let O be the ring of integers of either a number field or a finite extension of \mathbb{Q}_p. Define

$$ S(\Gamma_1(M))(O) := \lim_{m \to \infty} S_b(\Gamma_1(M))(O). $$

Specializing O to \mathbb{Z}_p, we complete these spaces, which are of infinite rank, and put

$$ \hat{S}(\Gamma_1(M); \mathbb{Z}_p) := \lim_{m \to \infty} S(\Gamma_1(M))(\mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p^m\mathbb{Z}_p $$

$$ \cong \lim_{m \to \infty} S(\Gamma_1(M))(\mathbb{Z}/p^m\mathbb{Z}_p) $$

$$ \cong \lim_{m \to \infty} S(\Gamma_1(M))(\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}/p^m\mathbb{Z}. $$

For the isomorphisms, we use that the direct limit is exact on modules and

\[(1) \quad S_b(\Gamma_1(M))(Z_p) \otimes_{Z_p} Z_p/p^mZ_p \cong S_b(\Gamma_1(M))(Z_p/p^mZ_p) \]

$$ \cong S_b(\Gamma_1(M))(\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}/p^m\mathbb{Z}, $$

which is an application of Lemma 9.

Theorem 18 (Hida). Assume $p \geq 5$. Let N be a positive integer prime to p and let $r \in \mathbb{N}$.

Under the q-expansion map, the images of $\hat{S}(\Gamma_1(N); \mathbb{Z}_p)$ and $\hat{S}(\Gamma_1(Np^r); \mathbb{Z}_p)$ agree inside $\mathbb{Z}_p[[q]]$.

Proof. This result is stated in [7, (1.3)]. (For the sake of completeness, let us point out that Hida’s spaces \hat{S} result from completing with respect to a natural norm $|f|_p$ whereas our \hat{S} arise as projective limits. However, it is easy to see that the two points of view are equivalent. Also, the spaces of modular forms that both we and Hida are working with are spaces of ‘classical forms’, cf. Section 2.) \[\square \]

Proposition 19. Assume $p \geq 5$. Let K be a number field and O its ring of integers. Let N be a positive integer prime to p and $r \in \mathbb{N}$. Let $f \in S(\Gamma_1(Np^r); O)$.

Then for all $m \in \mathbb{N}$, there are $b_m \geq 1$ and $g_m \in S_{b_m}(\Gamma_1(N))(O) \mapsto S(\Gamma_1(N))(O)$ such that $f(q) \equiv g_m(q) \pmod{p^m}$.

Proof. There is a $b \geq 1$ such that $f \in S_b(\Gamma_1(Np^r))(O)$. Since $S_b(\Gamma_1(Np^r))(O) = S_b(\Gamma_1(Np^r))(\mathbb{Z}) \otimes_{\mathbb{Z}} O$ by Lemma 9, there are $f_i \in S_b(\Gamma_1(Np^r))(\mathbb{Z})$ and $a_i \in O$ for $i = 1, \ldots, t$ such that $f = \sum_{i=1}^t a_i f_i$.

There is a $b_m \geq 1$ such that the images of f_i under the composition of maps

$$ S_b(\Gamma_1(Np^r))(\mathbb{Z}) \hookrightarrow S(\Gamma_1(Np^r))(\mathbb{Z}) \hookrightarrow \hat{S}(\Gamma_1(Np^r); \mathbb{Z}_p) \xrightarrow{\sim \text{Thm. 18}} \hat{S}(\Gamma_1(N); \mathbb{Z}_p) $$

$$ \rightarrow \hat{S}(\Gamma_1(N); \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p/p^m\mathbb{Z}_p \cong S(\Gamma_1(N))(\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}/p^m\mathbb{Z}. $$

\[\square \]
all lie in $S^b_m(\Gamma_1(N))((\mathbb{Z}_p) \otimes_{\mathbb{Z}} \mathbb{Z}_p/p^m\mathbb{Z}_p) \cong S^b_m(\Gamma_1(N))(\mathbb{Z}) \otimes \mathbb{Z}/p^m\mathbb{Z}$. Hence, there are $g_{i,m} \in S^b_m(\Gamma_1(N))(\mathbb{Z})$ such that $f_i(q) \equiv g_{i,m}(q) \pmod{p^m}$. Finally, $g_m := \sum_{i=1}^t a_i g_{i,m} \in S^b_m(\Gamma_1(N))(\mathcal{O})$ is such that $f(q) \equiv g_m(q) \pmod{p^m}$. □

Proof of Proposition 1. By virtue of Lemma 10, we can lift f to an element of $S^b(\Gamma_1(Np^r))(\mathcal{O}_K)$ for some number field K. Hence, Proposition 19 applies, yielding a form g_m, whose reduction mod p^m satisfies the requirements. □

5. ON THE RELATIONSHIPS BETWEEN STRONG, WEAK AND DC-WEAK

In this section we make a number of remarks concerning the notions of a mod p^m Galois representation arising ‘strongly’, ‘weakly’, and ‘dc-weakly’ from $\Gamma_1(M)$, and the accompanying notions of ‘strong’, ‘weak’, and ‘dc-weak’ eigenforms. Notice that Lemma 12 above implies that these are equivalent notions when $m = 1$. We show here that the three notions are not equivalent in general (for fixed level M), but must leave as an open question to classify the conditions under which the three notions coincide.

We also give a few illustrative examples at the end of the section.

5.1. Nebentypus obstructions. We show here that in order to strip powers of p from the level of a Galois representation which is strongly modular, it is necessary in general to consider the Galois representations attached to dc-weak eigenforms. The argument uses certain nebentypus obstructions that also – in general – prohibit ‘weak’ eigenforms of level prime-to-p from coinciding with ‘dc-weak’ eigenforms.

Assume $p \nmid N$ and let $f \in S_k(\Gamma_1(Np^r))(\mathbb{Z}_p)$ be a strong eigenform. A consequence of Theorem 3 is that the Galois representation $\rho_{f,p,m}$ dc-weakly arises from $\Gamma_1(N)$. We show that $\rho_{f,p,m}$ does not, in general, weakly arise from $\Gamma_1(N)$.

Suppose that $(\ell) f = \chi(\ell) f$ for primes ℓ with $\ell \nmid DNP$ (for some positive integer D), with a character χ that we decompose as $\chi = \psi \omega^i \eta$ where ψ is a character of conductor dividing N, ω is the Teichmüler lift of the mod p cyclotomic character, and η is the character of conductor dividing p^r and order a power of p. Assume p is odd, $r \geq 2$, $\eta \neq 1$, and $m \geq 2$. Let $\rho_{f,p,m}$ be the mod p^m representation attached to f. Then it is not possible to find a weak eigenform $g \in S_k(\Gamma_1(N))(\mathbb{Z}/p^m\mathbb{Z})$ of any weight k' such that $\rho_{g,p,m} \cong \rho_{f,p,m}$ by the argument below.

Let η have order p^s where $1 \leq s \leq r - 1$. Then we may regard η as a character $\eta : (\mathbb{Z}/p^s\mathbb{Z})^\times \to \mathbb{Z}_p[\zeta]^{\times}$, where ζ is a primitive p^s-th root of unity. Assume there exists a weak eigenform g on $\Gamma_1(N)$ such that $\rho_{f,p,m} \cong \rho_{g,p,m}$. As g is an eigenform for (ℓ) for primes ℓ with $\ell \nmid DNP$, we have that $(\ell)g = \psi(\ell)g$, where

$$\psi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{Z}/p^m\mathbb{Z}^\times$$

is a mod p^m character of conductor dividing N. Since $\rho_{f,p,m} \cong \rho_{g,p,m}$, we have that $\det \rho_{g,p,m} = \det \rho_{f,p,m}$. Now, we know that

$$\det \rho_{f,p,m} \equiv \epsilon^{k-1} \psi \omega^i \eta \pmod{p^m},$$

with ϵ the p-adic cyclotomic character. Also, from the construction of the Galois representation attached to g (cf. [1, Théorème 3]), we have that

$$\det \rho_{g,p,m} \equiv \epsilon^{k-1} \psi^i \pmod{p^m}.$$

Hence, after restricting to the inertia group at p, we have that

$$\epsilon^{k-1} \equiv \eta \epsilon^{k-1} \pmod{p^m}.$$
as characters of \(\mathbb{Z}_p^* \), or equivalently \(\eta \equiv \epsilon^{k'-k} \pmod{p^m} \).

The cyclotomic character \(\epsilon(x) = x \) has values in \(\mathbb{Z}_p \), however the image of the character \(\eta \) in \(\mathbb{Z}_p[\zeta] \) contains \(\zeta \). Since \(m \geq 2 \), the injection

\[
\mathbb{Z}_p/(p^m) \hookrightarrow \mathbb{Z}_p[\zeta]/(1-\zeta)^{(m-1)p^{r-1}(p-1)+1}
\]

is not a surjection. Thus, the reduction \(\bmod p^m \) of \(\epsilon^{k'-k} \) has values in \(\mathbb{Z}_p/(p^m) \), but the reduction \(\bmod p^m \) of \(\eta \) does not. This contradicts the equality \(\eta \equiv \epsilon^{k'-k} \pmod{p^m} \).

Note for \(m = 1 \), we always have \(\eta \equiv 1 \pmod{p} \) and hence it is possible to have the equality of characters in this situation.

Although the main purpose of this section is to show that there exist \(\rho_{f,p,m} \) which arise strongly from \(\Gamma_1(Np^r) \) and do not arise weakly from \(\Gamma_1(N) \), we note the proof shows there exist \(dc \)-weak eigenforms of level \(N \) which are not weak eigenforms of level \(N \).

5.2. On the weights in divided congruences. In this subsection we show that under certain conditions, the weights occurring in a \(dc \)-weak eigenform satisfy enough congruence conditions so that one can equalize them using suitable powers of Eisenstein series, a technique which was used in [2]. In fact, Corollary 22 below is a generalization of some of the results in [2], using different methods. We impose here that \(p > 2 \).

Lemma 20. Let \(\mathcal{O} \) be a local ring with maximal ideal \(p \), and let \(M \) be a finite projective \(\mathcal{O} \)-module. If \(f_1, \ldots, f_n \in M/pM \) are linearly independent over \(\mathcal{O}/p \), then \(f_1, \ldots, f_n \in M/p^mM \) are linearly independent over \(\mathcal{O}/p^m \).

Proof. By [11, Chap. X, Theorem 4.4], we have that \(M \) is isomorphic to \(F \oplus \bigoplus_{i=1}^n \mathcal{O}f_i \) with \(F \) a free \(\mathcal{O} \)-module, from which the assertion immediately follows.

Proposition 21. Let \(\mathcal{O} \) be the ring of integers of a finite extension of \(\mathbb{Q}_p \). Let \(f_i \in S_k(\Gamma_1(Np^r))(\mathcal{O}) \) for \(i = 1, \ldots, t \), where the \(k_i \) are distinct, and suppose \([\ell]f_i = \ell^{k_i}\psi_i(\ell)\eta_i(\ell)f_i \), for \(\ell \equiv DNp \) for some positive integer \(D \), where \(\psi_i : \mathbb{Z}/(Np^r)^\times \to \mathcal{O}^\times \), \(\eta_i : \mathbb{Z}/p^r\mathbb{Z}^\times \to \mathcal{O}^\times \) have finite order. Suppose also that the \(q \)-expansions \(f_i(q) \pmod{p} \) are linearly independent over \(\mathbb{Z}/p^r\mathbb{Z} = \mathbb{F}_p \).

Put \(f := \sum_{i=1}^t f_i \) and assume that \(f \) is an eigenform for the operators \([\ell] \) (e.g. this is the case if \(f \) is a \(dc \)-weak eigenform).

Then \(k_1 \equiv k_2 \equiv \cdots \equiv k_t \pmod{\varphi(p^m)/h} \), where \(\varphi \) is the Euler-\(\varphi \)-function, and \(h \) is the least common multiple of the orders of the \(\eta_i \pmod{p^m} \).

Proof. Denote by \(\lambda_i, \lambda_t \) the \(\ell \)-eigenvalue of \(f \) and the \(f_i \), respectively. Then we have \(\lambda f = \sum_{i=1}^t \lambda_i f_i(q) \pmod{p^m} \), whence \(\sum_{i=1}^t (\lambda - \lambda_i) f_i(q) \equiv 0 \pmod{p^m} \). Lemma 20 applied with \(M = \mathcal{O}[q]/(q^L) \) for suitable \(L \) large enough (for instance, take \(L \) so that the \(q \)-expansion map \(\bigoplus_{i=1}^t S_k(\Gamma_1(Np^r))(\mathcal{O}) \to \mathcal{O}[q]/(q^L) \) is injective), shows that \(\lambda \equiv \lambda_i \pmod{p^m} \) for all \(i \). In particular, we have \(\lambda_i \equiv \lambda_j \pmod{p^m} \) for all \(i, j \).

We have \(\lambda_i = \ell^{k_i}\psi_i(\ell)\eta_i(\ell) \). If \(\ell \equiv 1 \pmod{N} \) then \(\psi_i(\ell) = 1 \). For such \(\ell \) we thus have

\[
\ell^{k_i} \lambda_i^h \equiv \lambda_j^h \equiv \ell^{k_j} \lambda_j^h \pmod{p^m}
\]

for all \(i, j \), by the definition of \(h \).
By Chebotarev’s density theorem, we can choose \(\ell \) so that in addition to the property \(\ell \equiv 1 \pmod{N} \), we have that \(\ell \) is a generator of \((\mathbb{Z}/p^m\mathbb{Z})^\times\) (here we use that \(p \) is odd and that \(p \nmid N \)). It then follows that \(k_1h \equiv k_2h \equiv \ldots \equiv k_\ell h \pmod{\varphi(p^m)} \) as desired. \(\square \)

The proposition has the following application. Suppose that \(f \) is a \(\ell \)-weak eigenform mod \(p^m \) at level \(N \) of the form \(f = \sum_{i=1}^{t} f_i \) with \(f_i \in S_k, (\Gamma_1(N))(\mathcal{O}) \) for \(i = 1, \ldots, t \), where the \(k_i \) are distinct. Suppose that each \(f_i \) has a nebentypus and that, crucially, the \(q \)-expansions \(f_i(q) \pmod{p} \) are linearly independent over \(\overline{\mathbb{F}}_p \).

Then the proposition applies with \(h = 1 \) and shows that we have \(k_1 \equiv \cdots \equiv k_t \pmod{\varphi(p^m)} \). Without loss of generality suppose that \(k_1 \) is the largest of the weights. When \(p \geq 5 \), we can use, as in [2], the Eisenstein series \(E := \mathcal{E}_{p-1} \) of weight \(p - 1 \) and level 1, normalized in the usual way so that its \(q \)-expansion is congruent to 1 \(\pmod{p} \). The form \(\bar{E} := E^p - 1 \) is of weight \(\varphi(p^m) = (p - 1)p^{m-1} \), level 1, and is congruent to 1 \(\pmod{p^m} \). Due to the congruence on the weights, we may multiply each \(f_i \) for \(i = 1, \ldots, t - 1 \) with a suitable power of \(\bar{E} \) so as to make it into a form of weight \(k_1 \) with the same \(q \)-expansion mod \(p^m \). Consequently, in weight \(k_1 \) and level \(N \) there is a form that is congruent to \(f \mod p^m \), i.e., \(f \) is in fact a weak eigenform mod \(p^m \) at level \(N \).

We also record the following variant of Proposition 21 as it represents a generalization of some of the results of [2].

Corollary 22. Let \(\mathcal{O} \) be the ring of integers of a finite extension of \(\mathbb{Q}_p \). Let \(f_i \in S_k, (\Gamma_1(Np^j))(\mathcal{O}) \) for \(i = 1, \ldots, t \) satisfy \(f_1(q) + \ldots + f_t(q) \equiv 0 \pmod{p^m} \), where the \(k_i \) are distinct, and suppose \(\ell f_i = \ell k_i \psi_i(\ell) \eta_i(\ell) f_i \), where \(\psi_i : \mathbb{Z}/N\mathbb{Z}^\times \to \mathcal{O}^\times \), \(\eta_i : \mathbb{Z}/p^j\mathbb{Z}^\times \to \mathcal{O}^\times \) have finite order. Suppose for some \(i \), the \(q \)-expansions \(f_j(q) \pmod{p} \), \(j \neq i \), are linearly independent over \(\overline{\mathbb{Z}}/p\mathbb{Z} = \overline{\mathbb{F}}_p \).

Then \(k_1 \equiv k_2 \equiv \ldots \equiv k_t \pmod{\varphi(p^m)/h} \), where \(\varphi \) is the Euler-\(\varphi \)-function, and \(h \) is the least common multiple of the orders of the \(\eta_j \pmod{p^m} \).

Proof. Without loss of generality, assume \(i = 1 \). As \(-f_1(q) = \sum_{i=2}^{t} f_i \pmod{p^m} \) the proof of Proposition 21 shows that we have

\[
\ell k_1 \psi_1(\ell) \eta_1(\ell) \equiv \ell k_i \psi_i(\ell) \eta_i(\ell) \pmod{p^m}
\]

for \(i = 2, \ldots, t \), and the desired congruences then follow in the same way. \(\square \)

5.3. **Examples.** We do not know whether the notions ‘strong’ and ‘weak’ at a fixed level prime-to-\(p \) coincide in general when the weight is allowed to vary. However, the following examples seem to suggest that they do not. It is of obvious interest to resolve this question, perhaps first by looking for a numerical counterexample. (There would be theoretical problems to consider before one could do that, specifically obtaining a weight bound.)

In [18], Section 4.2, one has an example mod 9 in weight 2 for \(\Gamma_0(71) \). Note: the notion of strong and weak eigenform in loc. cit. is at a single weight, i.e. the weight is also fixed, which differs from our terminology. The example in loc. cit. shows that there is a cusp form in \(S_2(\Gamma_0(71)) \) which when reduced mod 9 is an eigenform mod 9, and which does not arise from the reduction mod 9 of an eigenform (for all \(T_n \)) on \(S_2(\Gamma_0(71)) \).

As a general mechanism for producing eigenvalues mod 9 that do not lift to characteristic 0 (at the same weight), consider the following setup: Let \(p \) be an odd
prime. Suppose \(f, g \in M = \mathbb{Z}_p^2 \) and \(f \equiv g \not\equiv 0 \) (mod \(p \)). Suppose that \(T \) is an endomorphism of \(M \), that \(Tf = \lambda f \), that \(Tg = \mu g \), and that \(\{ f, g \} \) is a basis for \(M \otimes \overline{\mathbb{Q}}_p \). Then \(\lambda \equiv \mu \) (mod \(p \)). Suppose further that \(\lambda \not\equiv \mu \) (mod \(p^2 \)). Consider \(h = f + g \). Then \(Th - \frac{\lambda + \mu}{2} h = Tf + Tg - \frac{\lambda + \mu}{2} (f - g) \), so we have \(Th \equiv \frac{\lambda + \mu}{2} h \) (mod \(p^2 M \)). Thus, \(\frac{\lambda + \mu}{2} \in \mathbb{Z}_p/p^2 \mathbb{Z}_p \) is an eigenvalue which does not lift to \(\mathbb{Z}_p \) as an eigenvalue of \(T \) acting on \(M \otimes \overline{\mathbb{Q}}_p \).

Using MAGMA, cf. [12], we found the following concrete example involving modular forms of the same weight. Let \(S \) be the free \(\mathbb{Z}_3 \)-module of rank 5 which is obtained from the image of \(S_2(\Gamma_0(52))(\mathbb{Z}_3) \) in \(\mathbb{Z}_3[[q]] \) under the \(q \)-expansion map. Consider

\[
\begin{align*}
f &= q + 2q^5 - 2q^7 - 3q^9 - 2q^{11} - q^{13} + 6q^{17} - 6q^{19} + O(q^{20}) \\
g &= q + q^2 - 3q^3 + q^4 - q^5 - 3q^6 + q^7 + q^8 + 6q^9 - q^{10} - 2q^{11} - 3q^{12} - q^{13} + 3q^{15} + q^{16} - 3q^{17} + 6q^{18} + 6q^{19} + O(q^{20})
\end{align*}
\]

which are the \(q \)-expansions, respectively, of newform 1 in \(S_2(\Gamma_0(52)) \), and newform 2 in \(S_2(\Gamma_0(26)) \), in MAGMA’s internal labeling system.

By Lemma 4.6.5 of [13] the series \(\sum_{2 \not| n} a_n(g) \) is the \(q \)-expansion of an element \(\tilde{g} \) of \(S_2(\Gamma_0(52)) \). Also, \(\tilde{g} \) is an eigenform for all the Hecke operators \(T_n \) for all \(n \geq 1 \) (this can be checked from the explicit formulae of \(T_n \) acting on \(q \)-expansions for \(n \) prime).

We have that \(\{ f, \tilde{g} \} \) is \(\mathbb{Q}_3 \)-linearly independent, and that \(a_n(f) \equiv a_n(\tilde{g}) \) (mod 3) for all \(n \) (to see that the congruence holds for all \(n \) use the Sturm bound, cf. Theorem 1 of [17]. The bound is 14 in this case.)

Let \(h = \frac{f + \tilde{g}}{2} \) so that

\[
\begin{align*}
h &= q - 3/2q^3 + 1/2q^5 - 1/2q^7 + 3/2q^9 - 2q^{11} + 3/2q^{15} + 3/2q^{17} + O(q^{20})
\end{align*}
\]

By the arguments above, \((h \text{ mod } 9) \) is a \(\mathbb{Z}_3/9\mathbb{Z}_3 \)-eigenform for the Hecke operators \(T_n \) for all \(n \geq 1 \). Furthermore, the system of eigenvalues for \(T_n \) for all \(n \geq 1 \) does not arise from the reductions mod 9 of \(f \), nor \(g \), as well as \(g_1 \), the other newform in \(S_2(\Gamma_0(26)) \). Thus, we see finally that the system of eigenvalues \(\in \mathbb{Z}_3/9\mathbb{Z}_3 \) for the \(T_n \) for all \(n \geq 1 \), acting on \(h \), do not lift to \(\mathbb{Z}_3 \) inside \(S \otimes \mathbb{Q}_3 \).

On the other hand, we make the remark that we have attached a mod 9 Galois representation to \(h \) by Corollary 17 (note: the residual mod 3 representation is absolutely irreducible).

References

(Imin Chen) DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, 8888 UNIVERSITY DRIVE, BURNABY, B.C., V5A 1S6, CANADA
E-mail address: ichen@math.sfu.ca

(Ian Kiming) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF COPENHAGEN, UNIVERSITYSPARKEN 5, 2100 COPENHAGEN Ø, DENMARK
E-mail address: kiming@math.ku.dk

(Gabor Wiese) INSTITUT FÜR EXPERIMENTELLE MATHEMATIK, UNIVERSITÄT DUISBURG-ESSEN, ELLERNSTR. 29, 45326 ESSEN, GERMANY
E-mail address: gabor.wiese@uni-due.de